ECCC – Electronic Colloquium on Computational Complexity
Homepage of the Electronic Colloquium on Computational Complexity located at the Weizmann Institute of Science, Israel
ECCC – Electronic Colloquium on Computational Complexity
Homepage of the Electronic Colloquium on Computational Complexity located at the Weizmann Institute of Science, Israel
Score | |
Type(s) | Internet |
Language(s) | English |
City(s) | Trier |
Category(s) | Mathematical / Science and technology |
Web site | Visit |
We study the one-clean-qubit model of quantum communication where one qubit is in a pure state and all other qubits are maximally mixed. We demonstrate a partial function that has a quantum protocol of cost $O(\log N)$ in this model, however, every interactive randomized protocol has cost […]
Rational Identity Testing (RIT) is the decision problem of determining whether or not a given noncommutative rational formula computes zero in the free skew field. It admits a deterministic polynomial-time white-box algorithm [Garg et al., 2016; Ivanyos et al., 2018; Hamada and Hirai, 2021], and a […]
We consider the problem of testing isomorphism to a fixed graph in the bounded-degree graph model. Our main result is that, for almost all $d$-regular $n$-vertex graphs $H$, testing isomorphism to $H$ can be done using $\tildeO({\sqrt n})$ queries. This result is shown to be optimal (up to a […]
In this paper, we establish a novel connection between total variation (TV) distance estimation and probabilistic inference. In particular, we present an efficient, structure-preserving reduction from relative approximation of TV distance to probabilistic inference over directed graphical models. […]
We show that there is a language in $\mathrm{S}_2\mathrm{E}/_1$ (symmetric exponential time with one bit of advice) with circuit complexity at least $2^n/n$. In particular, the above also implies the same near-maximum circuit lower bounds for the classes $\Sigma_2\mathrm{E}$, […]
A central result in the theory of Cryptography, by Hastad, Imagliazzo, Luby and Levin [SICOMP’99], demonstrates that the existence one-way functions (OWF) implies the existence of pseudo-random generators (PRGs). Despite the fundamental importance of this result, and several elegant […]
We revisit the problem of characterising the complexity of Quantum PAC learning, as introduced by Bshouty and Jackson [SIAM J. Comput. 1998, 28, 1136–1153]. Several quantum advantages have been demonstrated in this setting, however, none are generic: they apply to particular concept classes […]
Let $X$ be a set of items of size $n$ , which may contain some defective items denoted by $I$, where $I \subseteq X$. In group testing, a {\it test} refers to a subset of items $Q \subset X$. The test outcome is $1$ (positive) if $Q$ contains at least one defective item, i.e., $Q\cap I \neq […]
We explicitly construct the first nontrivial extractors for degree $d \ge 2$ polynomial sources over $\mathbb{F}_2^n$. Our extractor requires min-entropy $k\geq n - \frac{\sqrt{\log n}}{(d\log \log n)^{d/2}}$. Previously, no constructions were known, even for min-entropy $k\geq n-1$. A key […]
For every constant $d$, we design a subexponential time deterministic algorithm that takes as input a multivariate polynomial $f$ given as a constant depth algebraic circuit over the field of rational numbers, and outputs all irreducible factors of $f$ of degree at most $d$ together with their […]